753 research outputs found

    Detecting a gravitational-wave background with next-generation space interferometers

    Full text link
    Future missions of gravitational-wave astronomy will be operated by space-based interferometers, covering very wide range of frequency. Search for stochastic gravitational-wave backgrounds (GWBs) is one of the main targets for such missions, and we here discuss the prospects for direct measurement of isotropic and anisotropic components of (primordial) GWBs around the frequency 0.1-10 Hz. After extending the theoretical basis for correlation analysis, we evaluate the sensitivity and the signal-to-noise ratio for the proposed future space interferometer missions, like Big-Bang Observer (BBO), Deci-Hertz Interferometer Gravitational-wave Observer (DECIGO) and recently proposed Fabry-Perot type DECIGO. The astrophysical foregrounds which are expected at low frequency may be a big obstacle and significantly reduce the signal-to-noise ratio of GWBs. As a result, minimum detectable amplitude may reach h^2 \ogw = 10^{-15} \sim 10^{-16}, as long as foreground point sources are properly subtracted. Based on correlation analysis, we also discuss measurement of anisotropies of GWBs. As an example, the sensitivity level required for detecting the dipole moment of GWB induced by the proper motion of our local system is closely examined.Comment: 19 pages, 6 figures, references added, typos correcte

    Cortical and Subcortical Organization Participating in Tactual Pattern Perception in Man: A PET study

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Six-dimensional localized black holes: numerical solutions

    Full text link
    To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T1/2π\mathcal{T} \approx 1/2\pi \ell, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes.Comment: 17 pages, 9 figures, RevTeX4, typos correcte

    Detecting a stochastic background of gravitational waves in the presence of non-Gaussian noise: A performance of generalized cross-correlation statistic

    Get PDF
    We discuss a robust data analysis method to detect a stochastic background of gravitational waves in the presence of non-Gaussian noise. In contrast to the standard cross-correlation (SCC) statistic frequently used in the stochastic background searches, we consider a {\it generalized cross-correlation} (GCC) statistic, which is nearly optimal even in the presence of non-Gaussian noise. The detection efficiency of the GCC statistic is investigated analytically, particularly focusing on the statistical relation between the false-alarm and the false-dismissal probabilities, and the minimum detectable amplitude of gravitational-wave signals. We derive simple analytic formulae for these statistical quantities. The robustness of the GCC statistic is clarified based on these formulae, and one finds that the detection efficiency of the GCC statistic roughly corresponds to the one of the SCC statistic neglecting the contribution of non-Gaussian tails. This remarkable property is checked by performing the Monte Carlo simulations and successful agreement between analytic and simulation results was found.Comment: 15 pages, 8 figures, presentation and some figures modified, final version to be published in PR

    The Circumbinary Outflow: A Protostellar Outflow Driven by a Circumbinary Disk

    Full text link
    The protostellar outflows have indispensable role in the formation of single stars, because they carry off the excess angular momentum from the centre of the shrinking gas cloud, and permits further collapse to form a star. On the other hand, a significant fraction of stars is supposed to be born as binaries with circumbinary disk that are frequently observed. Here, we investigate the evolution of a magnetized rotating cloud using three-dimensional resistive MHD nested-grid code, and show that the outflow is driven by the circumbinary disk and has an important role even in the binary formation. After the adiabatic core formation in the collapsing cloud core, the magnetic flux is significantly removed from the centre of the cloud by the Ohmic dissipation. Since this removal makes the magnetic braking ineffective, the adiabatic core continuously acquires the angular momentum to induce fragmentation and subsequent binary formation. The magnetic field accumulates in the circumbinary disk where the removal and accretion of magnetic field are balanced, and finally drives circumbinary outflow. This result explains the spectacular morphology of some specific young stellar objects such as L1551 IRS5. We can infer that most of the bipolar molecular outflows observed by low density tracers (i.e., CO) would correspond to circumbinary or circum-multiple outflows found in this report, since most of the young stellar objects are supposed to be binaries or multiples.Comment: 11 pages, 3 figures, Submitted to ApJL. For high resolution figures see http://www2-tap.scphys.kyoto-u.ac.jp/~machidam/astro-ph/Circumbinary.pd

    RNA-Seq reveals virus–virus and virus–plant interactions in nature

    Get PDF
    As research on plant viruses has focused mainly on crop diseases, little is known about these viruses in natural environments. To understand the ecology of viruses in natural systems, comprehensive information on virus–virus and virus–host interactions is required. We applied RNA-Seq to plants from a natural population of Arabidopsis halleri subsp. gemmifera to simultaneously determine the presence/absence of all sequence-reported viruses, identify novel viruses and quantify the host transcriptome. By introducing the criteria of read number and genome coverage, we detected infections by Turnip mosaic virus (TuMV), Cucumber mosaic virus and Brassica yellows virus. Active TuMV replication was observed by ultramicroscopy. De novo assembly further identified a novel partitivirus, Arabidopsis halleri partitivirus 1. Interestingly, virus reads reached a maximum level that was equivalent to that of the host's total mRNA, although asymptomatic infection was common. AhgAGO2, a key gene in host defence systems, was upregulated in TuMV-infected plants. Multiple infection was frequent in TuMV-infected leaves, suggesting that TuMV facilitates multiple infection, probably by suppressing host RNA silencing. Revealing hidden plant–virus interactions in nature can enhance our understanding of biological interactions and may have agricultural applications

    Primordial gravitational waves in inflationary braneworld

    Get PDF
    We study primordial gravitational waves from inflation in Randall-Sundrum braneworld model. The effect of small change of the Hubble parameter during inflation is investigated using a toy model given by connecting two de Sitter branes. We analyze the power spectrum of final zero-mode gravitons, which is generated from the vacuum fluctuations of both initial Kaluza-Klein modes and zero-mode. The amplitude of fluctuations is confirmed to agree with the four-dimensional one at low energies, whereas it is enhanced due to the normalization factor of zero-mode at high energies. We show that the five-dimensional spectrum can be well approximated by applying a simple mapping to the four-dimensional fluctuation amplitude.Comment: 16 pages, 4 figures, typos correcte

    Strong Brane Gravity and the Radion at Low Energies

    Get PDF
    For the 2-brane Randall-Sundrum model, we calculate the bulk geometry for strong gravity, in the low matter density regime, for slowly varying matter sources. This is relevant for astrophysical or cosmological applications. The warped compactification means the radion can not be written as a homogeneous mode in the orbifold coordinate, and we introduce it by extending the coordinate patch approach of the linear theory to the non-linear case. The negative tension brane is taken to be in vacuum. For conformally invariant matter on the positive tension brane, we solve the bulk geometry as a derivative expansion, formally summing the `Kaluza-Klein' contributions to all orders. For general matter we compute the Einstein equations to leading order, finding a scalar-tensor theory with ω(Ψ)Ψ/(1Ψ)\omega(\Psi) \propto \Psi / (1 - \Psi), and geometrically interpret the radion. We comment that this radion scalar may become large in the context of strong gravity with low density matter. Equations of state allowing (ρ3P)(\rho - 3 P) to be negative, can exhibit behavior where the matter decreases the distance between the 2 branes, which we illustrate numerically for static star solutions using an incompressible fluid. For increasing stellar density, the branes become close before the upper mass limit, but after violation of the dominant energy condition. This raises the interesting question of whether astrophysically reasonable matter, and initial data, could cause branes to collide at low energy, such as in dynamical collapse.Comment: 24 pages, 3 figure

    Small localized black holes in a braneworld: Formulation and numerical method

    Get PDF
    No realistic black holes localized on a 3-brane in the Randall-Sundrum infinite braneworld have been found so far. The problem of finding a static black hole solution is reduced to a boundary value problem. We solve it by means of a numerical method, and show numerical examples of a localized black hole whose horizon radius is small compared to the bulk curvature scale. The sequence of small localized black holes exhibits a smooth transition from a five-dimensional Schwarzschild black hole, which is a solution in the limit of small horizon radius. The localized black hole tends to flatten as its horizon radius increases. However, it becomes difficult to find black hole solutions as its horizon radius increases.Comment: RevTeX, 13 pages, 6 figures, references corrected, typos corrected; to appear in Phys.Rev.
    corecore